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Reversible Diffusion-Influenced Reactions: 
Comparison of Theory and Simulation 
for a Simple Model 

Attila Szabo 1 and Robert Zwanzig  1 

Computer simulations of a simple model of a reversible diffusion-influenced 
reaction are used to test various approximate theoretical treatments. The model 
is a random walk in continuous time of N particles on a one-dimensional lattice. 
The particles can be trapped reversibly at the origin. They move independently, 
except that only one particle at a time can occupy the origin. The theory is for- 
mulated in general terms using master equations for the probability distribution 
of occupancy numbers of different lattice sites. The general theoretical problem 
is not solved, although some exact consequences are presented. Several 
approximation schemes are described and tested by comparison with the 
simulations. 
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1. I N T R O D U C T I O N  

This  p a p e r  is a b o u t  a m o d e l  for  b i m o l e c u l a r  d i f fus ion- in f luenced  reac t ions ,  

its s i m u l a t i o n  on  a c o m p u t e r ,  and  its use in tes t ing  va r i ous  t heo re t i c a l  

p r o p o s a l s  for  t r e a t i ng  such  reac t ions .  

W h a t  is a r g u a b l y  the  s imples t  m o d e l  of  a b i m o l e c u l a r  d i f fus ion-  

in f luenced  r eac t i on  can  be  f o r m u l a t e d  as fol lows.  C o n s i d e r  a o n e - d i m e n -  

s iona l  la t t ice  wi th  L + 1 sites l abe led  i = 0, 1, 2,..., L. A single par t i c le  on  the  
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lattice is assumed to undergo a random walk in continuous time with 
transition rates described by the scheme 

g a  K tr K K 
( ( ( ( ( 

0 1 2 3 4 L 
) ;' ) ) ) 

K d ~ K /r K 

The association reaction has rate ~ca; the dissociation reaction has rate ~Cd; 
and the hopping rate between all other sites is ~:. Now suppose that N par- 
ticles are placed on this lattice, with the restriction that the origin can hold 
only one particle at a time. All other sites can have multiple occupancy. To 
emphasize the special nature of the site i =  0, we labeled it by ,. It is a 
reversible trap. Particles that are away from the origin are invisible to each 
other and move independently. However, the constraint of single 
occupancy at the origin gives rise to a coupling of the particle motions. 

Consider a large number of replicas of the lattice, i.e., an ensemble', 
with initial particle locations taken from some specified probability dis- 
tribution. (This is in fact how the simulations to be described later were 
done.) For  any arbitrary initial distribution, this ensemble will come to 
equilibrium at long times. In the thermodynamic limit N ~  ~ ,  L--,  o% 
with C = NIL fixed, the fractional occupancy of the trap at equilibrium is 
Keq C/(1 + Keq C), where the equilibrium constant Keq is ga/lr d. This paper 
deals with the evolution of certain initial states and their approach to equi- 
librium. In particular, we are interested in the survival probability (defined 
as one minus the fractional occupancy) of the trap as a function of time. 

The problem is simple when the reaction is irreversible, i.e., the 
dissociation rate ~Cd is zero. Since in this case all the particles move 
independently, the N-particle survival probability is just the product of the 
one-particle survival probabilities. In fact, the Smoluchowski description of 
irreversible reactions is exact for this model. (1'2) We shall obtain an analytic 
expression for the survival probability of this model in the thermodynamic 
limit, in the special case where the association rate ~ is the same as the 
hopping rate ~. 

When the reaction is reversible, the complexity of the problem 
increases dramatically. The only exact results we have been able to obtain 
are certain relations among trap survival probabilities corresponding to 
different initial conditions. 

However, the exact kinetic behavior of this model can be readily 
simulated on a computer. Simulations can be used to evaluate various 
approximate theoretical approaches to the description of more general 
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reversible diffusion-influenced reactions. We focus on three approaches that 
are exact for this model in the irreversible case xd = 0, and which give the 
correct equilibrium limit in the reversible case. The first (3) is based on a 
modification of the rate equations that are used to describe irreversible 
reactions in the framework of the Smoluchowski theory. The second (4) 
involves generalizations of certain convolution relations that describe 
exactly reversible trapping in a system containing a single particle. The 
third (3'5~ can be obtained by using a superposition approximation to 
truncate a hierarchy of reduced particle-trap distribution functions. These 
approaches were originally formulated to treat reactions in a three-dimen- 
sional continuum. They describe the association reaction at contact by 
means of the radiation or partially absorbing boundary condition. They 
can all be implemented (3) once one knows the time-dependent rate 
coefficient for the irreversible reaction. This allows us to apply these 
approaches to our discrete one-dimensional lattice model without modifica- 
tion. 

The outline of the paper is as follows. In Section 2, we present a 
pedagogical treatment of irreversible reactions and obtain an exact analyti- 
cal expression for the survival probability in the special case ~c a = ~c. As was 
just observed, this is needed in order to implement approaches to the 
reversible case. In Section 3, we briefly describe the three approximate 
treatments mentioned above. In Section 4, we present a rigorous formula- 
tion of the dynamical behavior of our model, based on the master equation 
for the probability distribution of occupation numbers of all sites at time 
t. Since the difficulty of our problem comes from the constraint of single 
occupancy of the trap, an occupation number approach appears natural. 
By making suitable approximations, we show how the various approaches 
described in Section 3 can be obtained in a unified way. We conclude 
Section 4 by deriving exact relations between survival probabilities for 
certain different initial conditions. In Section 5 we describe the simulations, 
and compare them with the predictions of the various approximate treat- 
ments. Finally, we make some concluding comments in Section 6. 

2. I R R E V E R S I B L E  T R A P P I N G  

When there is no dissociation, or Xd = 0, the kinetics of this model can 
be worked out easily since one is dealing with independent particles. The 
single-occupancy constraint does not have any effect on the survival 
probability in this case. Once the trap in any replica is occupied, it stays 
occupied and does not produce any interaction between the other particles. 
The Smoluchowski treament of irreversible reactions turns out to be exact 
for this model. (1"2) We present it here in an elementary way that highlights 
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the close analogy that exists between the continuum and lattice descrip- 
tions. 

The survival probability of a single particle initially at lattice site i is 
S(tli). (Throughout the paper, we consistently use a capital Roman S for 
a single-particle survival probability. Many-particle survival probabilities 
will be denoted by a capital script ~ . )  By the choice of initial condition, 
it is clear that S(0I i) = 1. For our model, this quantity satisfies a discrete 
analog of the diffusion equation. For i = 2, 3 .... we have 

dS(tli) 
dt 

- -  - ~c(S(t I i +  1 ) -  2S(tl i) + S(t[ i -  1)) (2.1) 

and for i = 1 we have 

dS(t[ 1) 
(~ca + ~) S(tl 1) + xg(t 12) (2.2) 

dt 

One can use Eq. (2.1) for i =  1 also, by formally requiring that 

K(S(t I 1 ) - S(t I 0)) = ~%S(tl 1 ) (2.3) 

This condition is the discrete analog of the radiation (partially reflecting) 
boundary condition in continuum theories. This becomes clearer if we 
introduce the backward difference operator V defined by Vf ( i )=  
f ( i ) - f ( i -  1) and we rewrite Eq. (2.3) as 

~c v a ( t  I 1)= ~Caa(t ] 1) (2.4) 

Compare this with the boundary condition that describes the reaction of 
two spherically symmetric molecules at contact (r = R): 

47tDR2[ dS(tlr)] =tCaS(tlR ) (2.5) 
L dr Jr=R 

The similarity between Eqs. (2.4) and (2.5) allows us to treat lattice and 
continuum problems in a formally identical way. 

Consider a system of N particles initially in lattice sites in, 
n = 1, 2,..., N. Let 5r I {in}) be the corresponding survival probability. (As 
noted before, we denote many-particle survival probabilities by a script ~ . )  
Since the particles are independent, we have 

N 

5PN(tl {in})= l-I S(tlin) (2.6) 
n = l  
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Suppose that initially the particles are distributed randomly on the lattice, 
and the trap is empty. In the absence of reaction, or ~c~ = 0, this is the equi- 
librium distribution for our model. Since the probability that one particle 
is on a given lattice site is 1/L, the resulting many-particle survival 
probability is 

5PN(t I eq) = ~ S(tli) 
i = 1  

= [1 -S ( t l i ) ]  (2.7) 

In the thermodynamic limit (N--* o% L ~ 0% NIL = C), this gives 

5 P ( t l e q ) = e x p ( - C  ~ [1--S( t l i )])  (2.8) 
i = 1  

By summing Eq. (2.1) over i =  2, 3,..., and adding Eq. (2.2), we obtain 

d 
S(tli) -~caS(tl 1) (2.9) 

dt i=1 

This allows us to rewrite Eq. (2.8) as 

5 ~( t l e q )=e x p [ -C fo k ( t ' ) d t '  1 (2.10) 

where we have defined the time-dependent rate coefficient k(t) as 

k(t) = ~aS(tl 1) (2.11) 

Note that by using Eq. (2.4), this can be rewritten as 

k(t) = ~ VS(tl 1) (2.12) 

Finally, by differentiating Eq. (2.10) with respect to time, we find 

dY( t l eq)  
- k(t) CSP(tleq) (2.13) 

dt 

which is in fact the starting point of the Smoluchowski approach. For this 
model, the one particle survival probability corresponds to the trap- 
particle pair distribution function of Smoluchowski theory. Equation (2.12) 
expresses k(t) as the reactive flux at contact (which in our problem is 
lattice site 1). 
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Now we find k(t)  for our model by following closely the steps used in 
the continuum case. The Laplace transform [we use the notation 
f ( z )  = ~g dt e-Z~f(t) ] of Eq. (2.1) is 

- l + z S ( z ] i ) = ~ c [ S ( z l i + l ) - - 2 S ( z b i ) + S ( z ] i - - a ) ]  (2.14) 

Make the substitution 

S(z Ii) = 1 +  C ( z ) j ( z ) ] ;  (2.15) 
z 

where j~(z) is determined by requiring that Eq. (2.14) is satisfied for all i, 
and C(z) is determined by satisfying the boundary condition (2.3). The first 
requirement leads to a quadratic equation for f (z) ;  the solution 

ytlg;z~ - 21r + z- -  [Z(Z+41r 1/2 
(2.16) 

2~ 

is the root which gives j~(z)= 0 when ~ = 0. On using the boundary condi- 
tion, we find C(z), 

C(z) = ~" (2.17) 
zig(f- 1)-  o21 

Finally, the transform of the time-dependent rate constant is 

/~(z) ~" ~ ( 1 - f )  (2.18) 

In the special case where the association rate ~. is the same as the hopping 
rate K, this reduces to 

] - J (2.19) 

which can be inverted to give k(t), 

k( t ) = ~e -  2~t[ Io( 2tct ) + I1(2~t)] (2.20) 

where I ,  is a modified Bessel function of the first kind. This can be 
integrated so that 

o dt' k( t' ) = 2Kte- Z~t[ Io( 2~ct ) + I1(2~ct)] 

+ �89 - �89 (2.21) 

This means that we can find 5f( t leq)  analytically in the special case ~ca = •. 
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The many-particle survival probability clearly depends on the initial 
distribution of particles. For future reference, we consider the situation 
where initially the trap is empty, the particles are distributed randomly 
with concentration C, and site 1 contains an extra "geminate" particle. This 
initial condition describes an essentially irreversible reaction in which dis- 
sociation of a particle in a trap is induced photochemically. (6~ We denote 
{he resulting survival probability by 5~(t I 1), where the "1" serves as a 
reminder that there is an extra particle at site 1. Since all the particles are 
independent, it is clear that (4'6) 

k(t~ 
5~(tt 1)= S(tl 1) 5~(t t eq )=  ' '  5~(t I eq) 

Ka 
(2.22) 

where S(tl 1) is the survival probability of a single particle initially at site 
1, and where Eq. (2.11) was used to relate it to k(t). By using Eq. (2.10), 
this can be rewritten as 

1 d 
5P(tl 1)= 5~(t I eq) (2.23) 

~caC dt 

3. A P P R O X I M A T E  A P P R O A C H E S  TO REVERSIBLE T R A P P I N G  

Recently Szabo (3) discussed and compared three approximate ways of 
handling the complications that arise when the reaction is reversible. Here 
we describe how these approaches may be applied to our model. They all 
have the property that they are exact for our model in the irreversible limit. 
In addition they all predict the correct equilibrium limit in the reversible 
case. In the following section we will show that they can be obtained in a 
unified way by making appropriate approximations to a rigorous formula- 
tion of the problem. 

3.1. Rate Equations 

The simplest approach is based on modifying the Smoluchowski rate 
equation (2.13) that is used to treat an irreversible reaction. Suppose that 
initially the trap is empty and the particles are at equilibrium on the rest 
of the lattice. We denote the survival probability of the trap by ~ev(tteq); 
the subscript rev indicates that we are dealing with the reversible case, and 
leq) labels the initial condition. The probability that the trap is occupied 
at time t is 1 -~ev ( t l eq ) .  Perhaps the simplest modification of the 
Smoluchowski approach that one can try is to add a dissociation term 
~cd[1- 5 ~ ( t  I eq)] to the right-hand side of Eq. (2.13). This clearly reduces 
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to the correct behavior when ~d=0,  but unfortunately it predicts the 
wrong equilibrium limit when ~c d ~ 0. A modification that does lead to the 
correct equilibrium limit is 

a k(t) 
dt ~ov(t I eq) -- ;ca OcaC~v(tleq)-Ka[-1 - ~ev(t I eq)]) (3.1) 

where k(t) is the irreversible time-dependent rate coefficient that was 
introduced in the previous section. The solution of this equation, with the 
initial condition ~v(0q eq) = 1, is 

l (l+KeqCexp[-(C+K~ql)fok(t')dt']) (3.2) ~ v ( t  I eq) = 1 + Keq-----~ 

where Keq = Ka/l~ d. This approach is clearly very easy to use. As we shall 
see later, while it turns out to be exact at short times and gives the correct 
equilibrium limit, it does not work very well at intermediate times. 
However, in three dimensions, where diffusion plays a much less significant 
role, this may be a much more useful approximation. 

3.2. An A p p r o a c h  Based on Convo lu t ion  Relat ions 

A more sophisticated treatment of pseudo-first-order reactions has 
been given by Agmon and Szabo. (4) The basic ideas behind their approach 
can be best understood by first considering the initial condition where the 
trap is occupied and the other particles are randomly distributed outside 
the trap. We denote the resulting trap survival probability by ~ev(t]*), 
where I*) indicates that the trap is initially filled. When the bound particle 
dissociates from the trap for the first time, there is an extra particle at 
site 1. The irreversible survival probability of this configuration [-see 
Eq. (2.22)] is 5"(t i 1). We will call this extra particle the geminate particle. 
All other particles will be referred to as bulk particles. The trap can now 
be reoccupied by either the geminate particle or one of the bulk particles. 
In the first case, a subsequent dissociation again produces the configuration 
where the geminate particle is at site 1 and the bulk particles are in equi- 
librium. However, in the second case, the resulting distribution of particles 
is not necessarily the equilibrium one. If the trap remains occupied for a 
sufficiently long time, this distribution will eventually relax to equilibrium 
before the next dissociation event. 

The crucial approximation made in this approach is that every 
dissociation event is assumed to produce a configuration with a geminate 
particle at site 1 and bulk particles in equilibrium. The evolution or 
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response of this configuration is described by 5f(t] 1). The rate at which 
this configuration is produced is ~ c d [ 1 - ~ v ( t I * ) ] .  Therefore, one can 
express ~ev(t t*)  as the convolution of the rate with the response, 

;o ~rev(t I *) = rca dt ' [1 -~ , ( t - t ' l * ) ]~( t ' l l )  (3.3) 

which implicitly determines the time evolution of the trap survival prob- 
ability. In the one-particle case, C~O, 5P(tll)=S(tl 1) and Eq. (3.3) is 
exact. In other words, this formalism provides an exact description of the 
reversible binding of a single particle. (4) 

One of the attractive features of this approach is that it can handle 
different initial conditions with equal ease. For example, let ~ v ( t l e q )  
be the survival probability when initially the trap is empty and the bulk 
particles are in equilibrium. The generalization of Eq. (3.3) is (4) 

;o ~ev(tleq)=~(tleq)+tca d t ' [1-~v( t - t ' leq)]~( t ' l l )  (3.4) 

where the first term is just the irreversible survival probability of the trap. 
Finally, suppose that the trap is empty, the bulk particles are in equi- 
librium, and there is a geminate particle at site 1. The resulting survival 
probability, denoted by ~ev(t[ 1), satisfies 

~ev(tl 1 )=  ~ ( t l  1 )+  K~ dt'El-~ev(t-t ' l l)].Y(t ' l l)  (3.5) 

By Laplace-transforming these equations, and using Eq. (2.23), it is 
possible to express the transforms of each of the reversible survival 
probabilities in terms of the transform of the irreversible survival proba- 
bility 5e(t[eq). In applications, it may be more convenient to solve the 
convolution equations directly in the time domain by discretizing the 
integrals. 

By eliminating the transform of Y( t l eq )  between the transforms of 
~ev(tleq),  ~ev(t[*), and ~ev(tl 1), one can obtain relations between these 
quantities. In particular one can show that ~4) 

~ev(tleq)+ KeqC6~rev(tl,)= 1 (3.6) 

and 

d 
dt ~ev(t I eq) = --~Ca C~rev(t I 1) + ma[1 -- ~ v ( t  I eq)] (3.7) 
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The utility of these relations is that once the survival probability is 
calculated for one initial condition, say leq) where the trap is empty and 
the bulk particles are in equilibrium, they can be used to find survival 
probabilities for the other initial conditions. 

Although these relations were obtained within the framework of an 
approximate theory, they are in fact exact. This will be shown later. 

3.3. Superposi t ion Approx imat ion  

Lee and Karplus (5) treated reversible diffusion-influenced reactions by 
generalizing the theory developed by Monchick et aL (7) and Waite (8) for 
irreversible reactions. They derived an infinite hierarchy of equations for 
the reduced n-particle distribution functions. They truncated or decoupled 
the hierarchy at the lowest level by a superposition approximation. In 
this way they obtained a coupled set of equations for the trap survival 
probability ~ v ( t  I eq) and the trap-particle distribution function p(i, t). For 
the model considered in this paper, the lattice version of these equations is 

d 
dt ~ v ( t  I eq) = -ks(t)  CS~ev(t I eq) + xa[l  -- ~rev(t I eq)] (3.8) 

where kf(t) is related to the trap particle distribution function by 

k f ( t )  = reap(1 , t )  

This distribution function satisfies 

(3.9) 

8 
~ p(i, t)= x[p(i + 1, t ) -  2p(i, t) + p ( i -  1, t)] (3.10) 

with the initial condition p(i, 0) = 1 and the boundary condition 

~r t)--p(O, t)] = ~c Vp(1, t ) =  ~ap(1 , t ) - x a  
1 - ~ev(t I eq) 

C~ev(tleq) 
(3.11) 

When the dissociation rate tr vanishes, this theory reduces to the one 
developed for irreversible reactions in Section 2. To see this, recall that for 
this model p(i, t)=S(tl  i), and compare Eqs. (3.8)-(3.11) with Eqs. (2.13), 
(2.11), (2.1), and (2.4), respectively. 

It has been shown (3) that Eqs. (3.9)-(3.11) can be solved formally to 
give 

~_~_ f~ dk(t') (3.12a) k f ( t ) = k ( t ) -  d t 'O( t - t ' )  dt ~ 
eq  
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where we have defined r by 

1 - ~ v ( t  I eq) 
r - (3.12b) 

C S ~ (  t ] eq) 

and where k(t) is the time-dependent rate coefficient for an irreversible 
reaction [e.g., Eq. (2.20) when ~c a = ~c]. The proof given in ref. 3 was for the 
continuum case; however, the details of the derivation are immediately 
applicable to the lattice problem. Equations (3.8) and (3.12) now form a 
closed set that can be solved numerically once k(t) is specified. In practice, 
it is convenient to use Eq. (3.8) to obtain rate equations directly for ~b(t). 
One can show that 

d0(0 
dt = [ k A 0 -  ~or E t + Cr (3.13) 

which must be solved in conjunction with Eq. (3.12a) with r  0. Once 
r is found, ~ev(t]eq) can be obtained from Eq. (3.12b). 

These equations are highly nonlinear, but can be linearized near 
equilibrium. If one writes 

1 

~ev(t I eq) = 1 + Kr C + 3 ( 0  

then to lowest order in A,/3) 

J(z) 

(3.14) 

1 

~(o) z+(c+x;')z&z) (3.15) 

This is of course valid only if the initial state is very close to equilibrium. 
It describes how some small deviation A(0) produced by perturbing the 
equilibrium system at t = 0 decays to zero. On using Eq. (2.19) for/~(z) in 
Eq. (3.15), we find 

z(t )  ~ z (o)  Ko~ 1 
l+KcqC(~tct)l /2 as t--*w (3.16) 

Thus, equilibrium is approached as t 1/2 in one dimension. This asymptotic 
behavior has been predicted by Zeldovich and Ovchinnikov ~9) and by 
Kang and Redner,/1~ based on an analysis of density fluctuations. 

Finally, we note that the superposition approach does not appear to 
be applicable to the initial condition I*) where the trap is occupied, since 
in this case r  ~ .  However, one can use the identity in Eq. (3.6) to 
obtain ~ev(t]*) from ~ev(t I eq). Having done this, one is now in a position 
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to gain some insight into the range of validity of this approach.  Recall that 
in the limit C ~ 0, ~ev ( t l* )  describes the reversible binding of a single par- 
ticle (i.e., it is the probabil i ty that the trap is unoccupied, given that it was 
occupied initially). The convolut ion approach is exact in this limitJ 4) By 
calculating ~ev( t ]* )  from ~ev(t  I eq), determined from Eqs. (3.8) and (3.12), 
and taking the limit C ~ 0, one can show that  the approach  based on the 
superposit ion approximat ion  is also exact in this limit. 

4. O C C U P A T I O N  N U M B E R  F O R M U L A T I O N  

In this section we present an exact description of the dynamical  
behavior  of our  model. It is based on the master  equat ion for the probabil-  
ity P(no,  n l ,  n2,...; t )  that site i is occupied by n i particles (i = 0, 1, 2,...) at 
time t. Fo r  brevity, the set of occupat ion numbers  {nl, n2, . . .}  will often be 
denoted by n, and the probabil i ty by P(no,  n; t). Because site i =  0 is the 
trap, no can only be 0 or 1. Otherwise the particles are independent;  thus 
all other  occupat ion numbers  can have any nonnegat ive integer value sub- 
ject to a constraint  on the total number  of particles. If the thermodynamic  
limit is taken, this constraint  no longer applies, and the n are unbounded.  
P(no,  n; t) vanishes if no is not  0 or 1, or if any other  ni is negative. 

The master equations can be found by inspection of the kinetic scheme 
given in the Introduct ion.  For  each nearest neighbor pair of sites, one can 
move a particle to the left or to the right. Each move leads to a gain term 
and a loss term. The master equations are 

d p  
(o, .;  t) 

= - t G n a P ( 0 ,  nl,...; t ) +  ~caP(1 , n I - 1,..; t) 

+ ~c(nl + 1) P(0, nl + 1, nz - 1,...; t) - ~cnlP(O, n l ,  n2,...; t) 

+ ~c(n2 + 1 ) P(0, nl - 1,/7 2 q- l , . . . ;  t )  - -  ~cn2P(0, nl ,  n2,...; t) + -.. 

(4.1a) 

d 
P(1, n; t) 

= ~ca(n I + 1) P(0, nl + 1, n2,...; t) - KaP(1, n l ,  n2, . . . ;  t) 

+ ~(nl + 1) P(1, nl + 1, n 2 -- 1,...; t) - ~cnlP(1 , n l ,  n2, . . . ;  t)  

- t - / r  2 -+- 1) P(1, n~ -- 1, n 2 -k- 1,...; l )  - -  ~cnzP(1 , n l ,  n2, . . . ;  t )  q-- - . -  

(4.1b) 
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Because of the complexity of these equations, it is helpful to use a short- 
hand notation. We introduce the operators 

E j f ( . . . n j . . . ) = f ( . . . n / +  t . . . )  

Ej t f ( . . . n j  . . . ) = f ( . . . n j - 1 . . . )  

~=~ ~ [(EjETd,-1)nj+(Ej 1Ej+L-l)nj+~] 
j - -I  

Loo = - ~an, + ~ Lol = tcaE11 

Llo=KaEln,  Lll = -~ca+ ~ 

(4.2) 

Now the master equations may be written in the compact form 

d 
dt P(0, n; t )=  LooP(O, n; t )+  LolP(1 , n; t) 

d 
td ~ P( I' n; t )= LloP(O, n; t) + L, ,  P(1, n; t) 

(4.3a) 

(4.3b) 

The operator Ej adds a particle to site j, and E j '  removes one. The 
operator ~ describes diffusion between pairs of sites (j, j + 1) for j t> 1. It 
does not involve the pair (0, 1). It operates only on functions of n. It has 
an invariant or equilibrium distribution which is a product of Poisson 
distributions for each ni, determined by some concentration C, 

Peq(n) =j__~I 1.= --Cn:nj! e - c  (4.4) 

One can easily verify these identities: 

~@Peq(n) = 0; ~" P~q(n) = 1; ~ niPeq(n) = C (4.5) 
n n 

The equilibrium distribution for the entire system {0, n} is 

1 P~q(1, n)= KeqC Peq(n) (4.6) Peq(0, n)= 1 + KeqC P~q(n)' t + K~qC 

where K~q = tea~to a. This can be verified by substitution, using the above 
identities and also 

E~-1Peq(n ) = ~ Peq(n), ElnlPeq(n ) = CPeq(n ) (4.7) 
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The survival probability of the trap is given by 

5'~v(t) = ~ P(0, n; t )=  1 - - ~  P(1, n; t) (4.8) 
n n 

where P(no, n; t) is the solution of Eq. (4.3) subject to the appropriate 
initial conditions. For example, if the trap is initially unoccupied and the 
particles are randomly distributed over the rest of the lattice, the initial 
conditions are 

leq): \P(1 ,  n;0) = 

The corresponding survival probability is ~ v ( t l e q ) .  On the other hand, 
if the trap is initially occupied and the other particles are randomly 
distributed, the initial conditions are 

(P(0,  n ; 0 ) ' ] = (  0 ~ (4.10) 
1.)1 \P(1, n;0)J \Peq(n)J 

The corresponding survival probability is ~ v ( t l * ) .  Finally, if the trap as 
empty, the particles are distributed randomly, and there is an extra 
geminate particle at site 1, the initial conditions are 

The mean occupation number of site 1 is C + 1. The corresponding survival 
probability is ~ v ( t l  1). 

4.1. I r reversible  Binding 

As a first illustration of the use of the occupation number master equa- 
tion, consider the irreversible case ~d=0.  Suppose the trap is initially 
empty, and the other particles are randomly distributed. The survival 
probability is 

5~(t l e q ) = ~  e(0, n; t) (4.12) 
n 

where P(0, n; t) satisfies Eq. (4.3a) with ~c d = 0, 

d ~P(O,n;t)=(-~anl+~)P(O,n;t)=LooP(O,n;t) (4.13) 

The initial condition is 

P(0, n; 0) = P~q(n) (4.14) 
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Note that P(1, n; t) does not appear here; its evolution is driven by 
P(0, n; t), according to Eq. (4.3b). Let us guess that the solution has a local 
equilibrium form. That is, the distribution of occupation numbers at each 
site is still Poisson, but with a mean value that varies over the lattice. The 
concentration C, for reasons that will immediately become apparent, is 
replaced by CS(t[i). Then the trial solution is 

P(0, n; t) = l-[ [CS(tli)]"~ e-C (4.15) 
i = 1  H i !  

To satisfy the initial condition, we require that S ( 0 l i ) =  1. One finds by 
direct substitution that this trial solution indeed satisfies Eq. (4.13) if S(t l i )  
obeys Eqs. (2.1) and (2.2). On using this solution in Eq. (4.12), we obtain 
the survival probability, 

5g(tleq)=~ 1 ~ [CS(t[i)]"ie-C=exp(-C~, [l-S(t[i)]) (4.16) 
n i h i !  i 

which is identical with Eq. (2.8). Note that the result may also be written 
a s  

5~(t ] eq) = ~ exp(Loot) Peq(n) (4.17) 
n 

As another example, consider the initial condition where the trap is 
empty, the particles are randomly distributed, and there is an extra 
geminate particle at site 1. The initial condition is 

P(0, n; 0) = (nl/C) P~q(n) (4.18) 

The resulting survival probability is 

5~(t[ 1) = ~ exp(Loo t)(nl/C) Peq(n) (4.19) 
n 

But we have L0oPeq(n) = -KonlPeq(n), so that this can be rewritten as 

5~ 1) = • exp(Loot) -L~176 
n lgaC 

1 d 
- ~caC dt ~ exp(Loot) Peq(n) 

n 

1 d 
- 5P(t[ eq) (4.20) 

~c a C dt 

which is precisely Eq. (2.23). 
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For future reference, we calculate the average occupation numbers, 
and their correlations, defined by 

(ni )o  = ~  niP(O, n; t), (ninj)o= ~ ninjP(O, n; t) (4.21) 
%1 n 

On using Eq. (4.15), we find 

(ni)o = CS(t[i) ~9~ [ eq) (4.22) 

(nenj)o = [C2S(t[i)S(t[j)+g)~CS(t[i)] 5P(t [eq) (4.23) 

Note the appearance of the survival probability; this is present because the 
distribution P(0, n; t) has a normalization 5e(tleq) that decays in time. 

4.2. C o n v o l u t i o n  A p p r o x i m a t i o n  

Having developed all this machinery, it is now easy to see how to 
obtain the convolution formalism discussed in Section 3.2. Let us focus on 
5frev(tleq). The formal solution of Eq. (4.3a) with the initial condition 
P(0, n; 0) = Peq(n) can be written as 

P(0, n; t) = exp(Loot) P~q(n) + dt' exp(Loot') LolP(1, n; t -  t') 

= exp(Loo t) Peq(n) + ga dt' exp(Loo t') 

x E~Ip(1,  n; t - t') (4.24) 

On summing over n and using Eq. (4.17), we have 

~ v ( t  I eq) = ~ ( t  I eq) + ~cd ~ dt'exp(Loot') 
n 

x E~-~P(1, n ; t - t ' )  (4.25) 

We now assume that when the trap is occupied, the distribution of the 
other particles is completely random. This is the essence of the approxima- 
tion invoked by Agmon and Szabo. (4) In the present context, this means 

P(1, n; t ) ~  I -1-  5~v(t [ eq)] Peq(n) (4.26) 

After substituting in Eq. (4.26) and using the identity (4.7), we obtain 

5~v(t [ eq) ~_ Y( t  [ eq) 

+~ca~ d t ' [1-  5 ~ v ( t -  t' [ eq)]  
n 

x exp(Loo t')(nl/C) P~q(n) (4.27) 
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Finally, the use of Eq. (4.19) gives 

~ov(tleq)---5?(t[eq)+~cd dt'[1-~ev(t-t'[eq)]5?(t'll) (4.28) 

which is Eq. (3.4). 

4.3. Superpos i t ion  A p p r o x i m a t i o n  

The superposition approximation discussed in Section 3.3 can be 
obtained by making the right approximations in the occupation number 
formalism. First we get an equation for ~ev(t) by summing the master 
equation (4.3a) over n, 

d 
dZ  ov(t) = Y niP(O, n; t) E  P(o, .; t) 

n n 

+~c d ~ P(1, n l -  1 ..... ; t) 
II 

=-~a~nlP(O,n;t)+~ca~ P(1, n;t) (4.29) 
n i i  

{The sum over all n of 9 [ . 3 = 0 ,  and P ( 1 , - 1 , . . . ) = 0 . }  We define an 
average 

( . - . ) ) o = ~  ( . - . )P(0 ,  n; t) (4.30) 
n 

and use Eq. (4.8) to write 

d 
dt 5~ev(t)= -~c"(nl )0 + tcd[l - -  ~rev(t)] (4.31) 

NOW we need to find an equation for ( n l ) o ;  so we multiply the master 
equation (4.3a) by/11 and sum over n. This leads to 

d 
dt ( n l ) o =  - ~ c a ( n ~ ) o + K ( @ 2 ) o -  ( n l ) o ) +  ~cd(nl)l 

+ Xd[1 -- 5'~ev(t) ] (4.32) 

where we have introduced another average, defined by 

( ( ' " ) ) 1  = ~  ( . . . )P (1 ,  n; t) (4.33) 
n 

8 2 2 / ' 6 5 / 5 - 6 - 1 6  
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In the same way, we find equations for the other average occupation 
numbers (for i =  2, 3,...), 

d 
dt (ni)~ - x " ( n i n l ) ~ 1 7 6 1 7 6  (n; t)o)-t-tCd(ni)l 

(4.34) 

While these equations are exact, they are not particularly helpful in 
their present form. Now we attempt to close them by invoking a superposi- 
tion approximation, suggested by Eqs. (4.22) and (4.23). (This is exact in 
the irreversible case.) The approximation is 

(n i )o  = Cp(i, t) ~ v ( t  [ eq) (4.35a) 

(n ; ) l  = Cp(i, t)[1 - ~ev(t [ eq)] (4.35b) 

(ninj)o = [C2p(i, t)p(j, t)+6ijCp(i, t)] ~ev(tl eq) (4.35c) 

Then the equations for ~ev and (ni)o are transformed to 

d 
~ev(t I eq) = -tcaCp(1 , t) ~rev(/I eq) + ~cd[1 -- ~rev(t I eq)] 

d ~ca[1 - ~ev( t  I eq) ]  
dtP(1, t ) =  C~rev(t ] eq) --~cap(1, t) 

+ ~c[p(2, t ) - p ( 1 ,  t)l  

d 
td ~ p(i' t)= x[p(i + 1, t ) -  2p(i, t) + p ( i -  1, t)] 

(4.36) 

(4.37) 

(4.38) 

The final equation holds for i = 2, 3,..., but can be made valid for i = 1 also 
by imposing the boundary condition 

1 - ~ev(t I eq) 
tr Vp(1, t)=Xap(1, t)--Xa (4.39) 

C~ev(t I eq) 

The resulting equations are identical with those presented in Section 3.3. 
The approximations in Eq. (4.35) are equivalent to those made in that 
section. 

4.4. The Chemical Approximation 

In the chemical approximation one focuses on the average occupation 
numbers 

(ni) = ~ 2 niP(no, n; t )=  (ni)o-t- (hi) 1 (4.40) 
n o n 
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These correspond to concentrations that one would actually measure in an 
experiment: hence the name "chemical." The master equation leads to 

d 
dt <no> = -- xa<no> + tG<(1 -- no) n l  > 

d 
dt @1 > = tea (no > - ~G<( 1 - no) n l  > + K ( < n 2 >  - -  (n ,  >) 

d 
dt (ni> = K ( ( n i + l > - - 2 ( n ~ )  + ( n , _ l ) ) ,  

(4.41a) 

(4.41b) 

i>~ 2 (4.41c) 

The first of these is actually identical to Eq. (4.31). To see this, note that 

( n o > = ~ n o P ( n o ,  n ; t ) = ~  P(1, n ; t ) = l - 5 ~ v ( t )  (4.42a) 
n o n n 

((1 - no) nl ) = ( n l ) o  (4.42b) 

As with all procedures involving hierarchies of equations, these are exact, 
but not helpful unless some closure approximation is made. A reasonable 
guess is to break the average, 

((1 - no) nl ) ~ < 1 - n o )<n I ) = <n 1 ) "~rev(l) (4.43) 

as one does in the stochastic theory of chemical reactions. Let us make this 
approximation and define ( n i ) =  Cp(i, t) for i =  1, 2 ..... Then the above 
equations are equivalent to 

d 
d-~ ~ev(t) = - KaCp(1, t) ~ ,v( t )  + ~ca[l - ~ v ( t ) ]  

d 
dt p(i, t) = K[p(i  + 1, t) - 2p(i, t) + p ( i -  1, t) ], 

~c Vp(1, t) = ~cap(1, t) ~ev(t) - xd 
1 - -  ~9~rev(t ) 

C 

(4.44a) 

i =  1, 2, 3 , . . .  (4.44b) 

(4.44c) 

Similar results were obtained by Agmon et al., (1U using different considera- 
tions. 

It is interesting to compare these equations with those obtained by 
means of the superposition approximation, Eqs. (4.36), (4.38), and (4.39). 
They differ only in the form of the boundary conditions [compare 
Eqs. (4.39) and (4.44c)]. As a result of this difference, the chemical 
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approximation does not reduce to the Smoluchowski theory of irreversible 
reactions when ~c a = 0 and hence is not exact for our model in this limit. 

By linearizing Eqs. (4.44a)-(4.44c) near equilibrium, one can show 
that a small deviation from equilibrium decays as t-1/2 at long times. This 
is the same behavior that was obtained within the framework of the super- 
position approximation; see Eq. (3.16). However, the coefficient differs from 
that in Eq. (3.16) by an extra factor of 1 +KeqC in the denominator. 

4.5. D e r i v a t i o n  of  some Iden t i t i es  

In Section 3.2 we discussed some identities relating survival 
probabilities for different initial conditions. Here the occupation number 
formalism is used to show that those identities are in fact exact for our 
model. The proofs make use of formal solutions of the master equations 
(4.3a), (4.3b) by means of Green's functions, 

P(1, n; t) \Glo(t) GII(t)J\P(1, n; 0) 

The Green's functions are operators, but that is not a problem here. 
If the initial distribution is equilibrium, the distribution at time t is 

also equilibrium. This means that for all times, 

Peq(0, n) = Goo(t) Peq(0, n) + Go~(t ) Peq(l, n) (4.46) 

where the individual equilibrium distributions are defined in Eqs. (4.6a), 
(4.66). Another useful formula is 

d 
dt G~176 = Goo(t) Loo + Gol(t) Llo (4.47) 

The proofs involve these last two equations. 
For the initial condition (4.9), where the trap is empty and the 

particles are randomly distributed, Eq. (4.45) leads to 

5~v(t ] eq) = ~ Goo(t) PCq(n) (4.48) 
n 

Similarly, for the initial condition (4.10), where the trap is occupied and 
the other particles are randomly distributed, we find 

~ev(t] * ) = ~  Gol(t) Peq(n) (4.49) 
n 
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Now consider the left-hand side of Eq. (3.6), and use the last two 
equations, 

5~ev(t I eq) + Keq CS~ev(t I *) 

= ~ Goo(t)P~q(n)+ ~ K~qCao~(t)P~q(n) 
I1 n 

! 
= ( l+K,qC)~Peq(O,n)=( l+KeqO) l+Keq  C 1 (4.50) 

I I  

Thus we have proved Eq. (3.6). 
The other identity, Eq. (3.7), involves also ~v( t l  1), which evolves 

from the initial condition given in Eq. (4.11), 

5~r~v(t k 1) = ~ Goo(t)(nl/C) Peq(n) 
n 

1 
- tc~C ~. Goo(t) Lo0P~q(n) (4.51) 

where we have used the definition of Loo to arrive at the last term. Now 
take the operator identity in Eq. (4.47), multiply on the right by Peq(n), 
and sum over n, to get 

d 
~c~(t I eq) = ~ Goo(t) LooP~q(n) + ~ Go~(t) L~oP~q(n) 

n 11 

(4.52) 

By using Eq. (4.51) to rewrite the first term, and the definition of Llo in the 
second term, this becomes 

d 
~ ~ev(t leq)= --~CaC~cv(ti 1)+•a ~ Gol(t) ElnlPeq(n) (4.53) 

n 

The second part of Eq. (4.7) provides a simplification of the last term, 

d 
dt 5~ev(t ieq) = -~c,CS'~ev(t [ 1) + tr ~ Gol(t)Peq(n) 

n 

= - ~ a  C~rov(t I 1) + ~a CNov(t I *) (4.54) 

The earlier identity, Eq. (3.6), allows us to eliminate 5~ov(tl*); this leads 
directly to Eq. (3.7), and completes the proof. 
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5. C O M P A R I S O N  OF T H E O R Y  W I T H  S I M U L A T I O N S  

In this section we compare the various approximate theoretical predic- 
tions with the results of numerical simulations. We simulated ~ev(t leq)  
using an algorithm described by Richards. (12) 

The theoretical treatments previously discussed were all for our model 
in the thermodynamic limit. The simulations were performed on a finite lat- 
tice with L + 1 sites containing N particles. We tried to choose N (typically 
100) and L (typically 200) large enough that the simulation accurately 
represents the thermodynamic limit over the time range of interest. If one 
defines C as N/L, the equilibrium probability that a particle is bound in the 
finite system turns out to be the same as it is in an infinite system in the 
thermodynamic limit, Keq C/(1 + Keq C). 

The rules for the simulation were as follows. A single experiment 
begins with randomly distributing N particles on L sites. At each time step, 
a labeled particle is selected at random, and one of its neighboring sites is 
selected at random. If this particle is not at the trap, and the designated 
neighbor is not the trap, and a random number r between 0 and 1 is less 
than •, then the particle is moved to the designated neighbor. Otherwise 
the particle stays put, and a new particle is selected at random. (Typically 
we used K--0.1, in the hope that the simulations accurately describe a con- 
tinuous-time random walk.) If the designated neighbor is L + 1, the particle 
is immediately moved back to site L. If the particle is at 1, and the 
designated neighbor is an empty trap, and r is less than ~ca, the particle 
moves into the trap. If the selected particle is in the trap, and the 
designated neighbor is 1, and r is less than ~cu, then the particle moves to 
site 1. Otherwise it stays put and a new particle is selected at random. This 
cycle is repeated for Nr~p (typically 105) initial conditions or experiments, 
and the fractional occupancy of the trap is obtained at each time step n. 
The dimensionless time T= ~ct that appears in the analytic theories is 
related to the number of steps n by z = ~cn/2N = O.05n/N. Thus, if N = 100 
and ~c = 0.1, 20,000 time steps are required to reach z = 10. (Simulations of 
this model have also been performed by Agmon et aL (11)) 

In Figs. 1-3, we compare the simulation results with the predictions of 
three analytic schemes, respectively the rate equation, convolution, and 
superposition approaches. These all involve ~G = ~c and Keq = 0.5, 1, 2, 5, 
and ~ (i.e., irreversible binding). The simulations shown here were all with 
N =  100, L = 2 0 0 ,  ~c=0.1, and Nrep= 105. In these figures, the fraction 
bound N' = 1 -  ~ev is plotted against the dimensionless time z = ~ct. The 
rate equation results were obtained using Eqs.(3.2) and (2.21). The 
convolution results were obtained by solving Eq. (3.4) numerically (after 
discretizing the time integral). The superposition results were obtained by 
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solving Eqs. (3.13) and (3.12a) numerically [using the forward difference 
approximation for the time derivative in Eq.(3.13) and using the 
trapezoidal rule to discretize the time integral in Eq. (3.12a)]. Once ~b(t) 
was calculated, ~( t )  was found using ~( t )  = C~(t)/[1 + Cr 

In the case of irreversible binding, Keq = oo, all three approaches are 
known to be exact for this model. The excellent agreement between theory 
and simulations for the top curves in each of the three figures shows that 
over this time range, the simulations accurately reflect the behavior of the 
model in the thermodynamic limit. In other words, the choices made for N 
and L are sufficiently large, and the time step is sufficiently small. 

It can be seen from Fig. 1 that the rate equation approach is exact at 
short times. While it predicts the correct equilibrium limit, it does rather 
poorly at intermediate times. This is not unexpected, since one-dimensional 
problems are particularly demanding for an approach based on rate 
equations. This is because in one dimension, the long-time limit of the 
irreversible rate coefficient is zero. In three dimensions, it tends to a finite 
(steady-state) value. Thus diffusion plays a much more significant role in 
one-dimensional problems. Consequently, our simple model provides a 
rather stringent test of any approach to reversible diffusion-influenced 
reactions. The rate equation approach appears to be a more useful approxi- 
mation in three dimensions. (3' 13 

Figure 2 shows that the convolution approximation works much 
better. Nevertheless, there is still a small, but significant difference between 
this theory and simulations at long times. The equilibrium limit is 
approached too quickly. 

0 . 9  , , , I i , I 
I r a t e  e q u a t i o n  L 

=: o 
O 

.13 

"6 

0 . . . .  J i 

0 5 10 

,7- 

Fig.  1. C o m p a r i s o n  of  s i m u l a t i o n s  (circles) wi th  the ra te  e q u a t i o n  a p p r o a c h  for  •, = ~ a n d  

C = 0.5. The  f r ac t ion  b o u n d  ~ ( z )  is g iven as a func t ion  of  z = ~t for  ( top  to  b o t t o m )  K~q = co, 

5 , 2 ,  1 ,0 .5 .  
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o( , i 
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Fig.  2. Comparison of simulations (circles) with the convolution approach for  K ~ =  ~c and 
C = 0.5. The fraction bound ~'(z) is given as a function of  z = Kt for  ( t o p  to  bottom) Keq = oo, 

5 , 2 ,  1, 0.5. 

Finally, it can be seen from Fig. 3 that the superposition approxima- 
tion results, while comparable to the convolution results when Keq > 1, are 
clearly more accurate for Keq = 0.5. While neither approach is exact, both 
give semiquantitative results over the entire parameter range examined. 
Thus, they provide a useful description of reversible diffusion-influenced 
reactions. 

We have also examined the predictions of the chemical approximation 
by solving Eqs. (4.44a)-(4.44c) numerically for a finite lattice. For Keq = 1, 

0 , 9  i i I i i I i i i L _ _  

superposit ion 

g 

0 
0 5 10 

"7" 

Fig. 3. Comparison of simulations (circles) with the superposition approach for  ~c~ = ~c and 
C = 0.5. The fraction bound M(z) is given as a function o f  r = •t for  ( t o p  to b o t t o m )  K~q = 0% 

5, 2, 1, 0.5. 
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this approximation was found to work better than any of the three 
approaches discussed above (the results are not shown here) for ~ev(tleq).  
For  larger Keq, the chemical approximation deteriorates significantly; this 
is to be expected, since we know that it is not exact for an irreversible 
reaction. This is in agreement with the work of Agmon et  al. (11) Moreover, 
even for Keq = 1, when we used the chemical approximation to calculate 
~ev(tl *) (i.e., the trap is initially occupied), we found that the identity in 
Eq. (3.6) was violated at intermediate times. 

Finally, we examined how the equilibrium limit is approached. Both 
the superposition and chemical approximation treatments (as well as 
analysis of density fluctuations (9,1~ predict that the deviation from equi- 
librium decays to zero as t 1/2 in one dimension. In an attempt to find the 
exact decay, we performed a simulation for Keq = 0.5 with the lattice jump 
rate ~c = 1 and Nre p = 10 6. (When ~c = 1, a particle moves at each time step, 
unless it tries to move into an occupied trap.) A linear least squares fit to 
a log-log plot gave a slope of -0.54.  This is in agreement with the simula- 
tions of Agmon et  al., ( m  who found a slope somewhat larger than -0 .5 .  
Since a slope near -0 .54  is somewhat unexpected, we tried to see whether 
it is an artifact of the finite size of the lattice. Therefore we carried out a 
simulation with N = 200, L = 400, and Nrep = 10 6 (see Fig. 4). The resulting 
slope is -0 .51.  This suggests that in the thermodynamic limit, equilibrium 
is approached as t-1/2 in one dimension. Simulations of a second-order, 
one-dimensional reaction by Kang and Redner (1~ led to the same conclu- 
sion. 

- 1 . 5  

j-2 

- 2 . 5  

i I ~ I I 

i I i I i I i 

0.5 1 1.5 

log(q-) 

Fig. 4. Simulation results ( N = 2 0 0 ,  L =400)  showing how equilibrium is approached for 
K,q = 0.5, C = 0.5. The logarithm of the deviation of the fraction bound from its equilibrium 
value is plotted as a function of In z. The points at r = 1, 2, 3,..., 100 were obtained by 
averaging 106 initial conditions. The solid line is a linear least squares fit of the data (v >1 3) 
with slope -0 .51 .  
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6. C O N C L U D I N G  R E M A R K S  

We have studied three formulations of increasing complexity that all 
approximately describe the kinetics of reversible diffusion-influenced 
reactions. Although these approaches were considered in the context of a 
very simple one-dimensional lattice model, they are applicable without 
modification to more realistic three-dimensional continuum models. While 
one-dimensional problems are of limited interest from an experimental 
point of view, they do provide a demanding test for theories of diffusion- 
influenced reactions. An approximate approach that has a solid theoretical 
foundation is expected to work much better in three dimensions. 

By comparing the predictions of these approaches with simulations, 
we found that the rate equation formalism was the least accurate. The con- 
volution and superposition approaches worked much better, although they 
were still not completely satisfactory at moderately long times. In three 
dimensions, for reactions that are only partially diffusion-controlled, the 
difference between the rate equation and convolution formalisms is 
smaller (3) than one would expect from the present work. The superposition 
approach predicts that a small fluctuation about equilibrium will decay to 
zero as t -1/2 in one dimension. This appears to be exact. 

Although we were able to derive certain exact relations between sur- 
vival probabilities corresponding to different initial conditions, we were not 
able to find a closed set of equations to describe exactly the kinetics of our 
model. Even if such an exact solution is found in one dimension, it is 
likely that three-dimensional problems will remain intractable. Thus, the 
approximate approaches we have considered in this paper should still be of 
interest. 
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